
TPS Event, NTA Dublin, 27 June 2018

# Modelling Clean Air Zones

Dr David Connolly, Director of Innovation, SYSTRA Ltd







- 1. Background
- 2. Overview of the Required Modelling
- 3. Issues/Challenges
- 4. Concluding Remarks



#### Background

- Poor Air Quality is the biggest risk to public health in the UK
- Air pollution also results in damage to the natural environment
- WHO-based EU limits (40  $\mu$ g/m<sup>3</sup>) on annual average concentrations of NO<sub>2</sub> were exceeded at one or more locations in 37 out of 43 (86%) air quality modelling areas covering the UK in 2015
- Concentration of NO<sub>2</sub> is heavily influenced by the emission of NO<sub>X</sub> (= NO & NO<sub>2</sub>) by road traffic
- UK emissions of NO<sub>X</sub> fell by almost 70% between 1970 and 2015 (1.5% pa) and are likely to continue to fall as the latest EURO6 emissions technology spreads through the fleet
- NO<sub>2</sub> not decreased as quickly as expected due to a number of factors
- increase in % of diesel cars
- increase in % of primary  $NO_2$  in  $NO_X$  emissions
- failure of EURO\_5 and early EURO\_6 technology to work 'on-street'
- 75 UK Local Authorities predicted to exceed the 40 μg/m<sup>3</sup> limits in 2017, and 42 predicted to be still over this limit in 2020
- DEFRA/DfT set up Joint Air Quality Unit (JAQU) in April 2016 to tackle the problem
- Commitment to introduce Clean Air Zones in 5 UK Cities (in addition to London's ULEZ Initiatives) other cities may need to consider similar measures
- JAQU have provided a number of Guidance documents, including Clean Air Zone Framework tramework.pdt https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment\_data/file/612592/clean-air-zone-



## The Clean Air Zone Cities

# London Ultra-Low Emission Zone (ULEZ) (currently 103 $\mu$ g/m<sup>3</sup>)

- Ourrently covers the same areas as the congestion charge
- May be extended
- Will come into force in September 2020 (or earlier)
- Minimum Emissions Standard for Exemption and Proposed Charge
- Petrol car: >= EURO 4 or better (>=Jan 2006): £12.50
- Diesel car: >= EURO 6 (>= September 2015 ): £12.50
- Diesel van: >=EURO6 (>= September 2016): £12.50
- HGV & Buses: >=EURO6 (>=January 2014): £100
- 5 Clean Air Zone Cities (& their highest average  $NO_2$  concentrations in 2017)
- Birmingham (60 μg/m<sup>3</sup>)
- O Derby (57 μg/m<sup>3</sup>)
- Leeds (60 μg/m<sup>3</sup>)
- ο Nottingham (57 μg/m<sup>3</sup>)
- ο Southampton (57 μg/m<sup>3</sup>)



# Questions to Be Answered by the Modelling

• Potential Variants of Charging -CAZs

- A = buses, coaches, taxis & PHVs
- B = A + HGVs
- C = B + vans
- D = C + cars, motorcyles & mopeds
- Boundary of the CAZ
- Daily Charge (by vehicle class)
- Any Discount/Exemptions for Residents & Others?
- Can we avoid creating more air quality problems than we solve?





### Modelling Steps

0

- Build/re-base your traffic/transport model (Base year validation data <5 year old)</li>
- Consider the need for segmentation by income
- Estimate the current local compliant/non-compliant proportions by vehicle type
- Forecast the 'Business as Usual' Compliant/Non-Compliant %Splits
- Decide on one or more charging regimes to be considered
- Forecast the Do Something Compliant/Non-Compliant %Splits (as a function of £charge?)
- Identify one of more Clean Air Zone Cordons
- Model the Business as Usual and Do Something (ie 'Non-Compliant Vehicles Pay Once per Day')
- Estimate the Future Year Emissions (BaU and Do Something) eg ENEVAL/EFT
- Use an Air Quality Dispersal Model to predict impacts on future air quality eg RapidAir
- Refine the scheme to derive a Preferred Option which achieves the required future air quality
- Appraise the Costs and Benefits of the Preferred Option

## Difficulties/Challenges

- Not every air quality problem area is covered by an up-to-date traffic model
- Local fleet age profiles can vary significantly from national averages
- Predicting the Business as Usual Fleet (Petrol vs Diesel split and uptake of EV's etc)
- How will the introduction of the Clean Air Zone affect the compliant/non-compliant %split
- Home location inside vs 'close' vs 'far away'
- Frequency of travel within the cordon
- Level of the charge
- Availability of alternatives
- Relative cost of upgrading to compliant
- Accurately modelling the 'All Day Charge' (including discount for residents of CAZ)
- Complex interactions between detailed cordon location, charging regime, the level of charge &
- Do\_Something %compliance assumptions



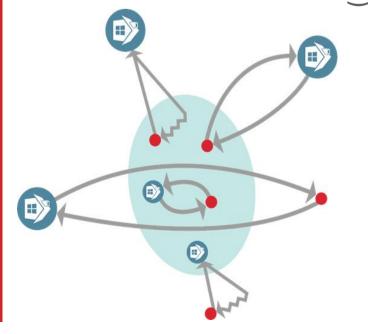
## Difficulties/Challenges

- Not every air quality problem area is covered by an up-to-date traffic model
- Local fleet age profiles can vary significantly from national averages
- Predicting the Business as Usual Fleet (Petrol vs Diesel split and uptake of EV's etc)
- How will the introduction of the Clean Air Zone affect the compliant/non-compliant %split
- Home location inside vs 'close' vs 'far away'
- Frequency of travel within the cordon
- Level of the charge
- Availability of alternatives

needed?

More research

- Relative cost of upgrading to compliant
- Accurately modelling the 'All Day Charge' (including discount for residents of CAZ)
- Complex interactions between detailed cordon location, charging regime, the level of charge &


Do\_Something %compliance assumptions

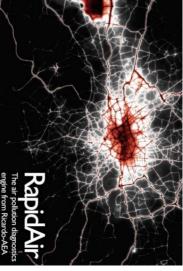
# Modelling an £X/day discounted to £Y/day for Residents

 Simple home-based pairs •+£X/2 toll for non-compliant vehicles on all inbound links entering the CAZ

0

- Internal-to-Internal: +f to the 2-way car cost in the demand model
- Internal-to-External: +£Y £X/2 to the 2-way car cost in the demand model
- External-to-Internal: +£X/2 to the 2-way car cost in demand model
- External-to-External: No charge (just the inbound cordon tolls)
- 1-way trips From-Home (eg parts of triangles):
- From Internal to anywhere: +£Y/2 in the demand mode
- From External to anywhere: No charge in the demand model
- 1-way To-Home
- Internal-to-internal: +£Y/2
- External-to-Internal: £Y/2 £X/2
- External-to-External: No charge
- Non-Home-Based trips: No charge




## Difficulties/Challenges Cont'd

• Keeping emissions modelling up to date

- $\circ$  Air Quality/Dispersal Modelling, including other sources of NO<sub>2</sub>
- Background/transboundary
- Ports & Docks
- Power stations/incinerators/big chemical plants etc
- How to quantify the costs (and benefits) of changes to the Do\_Something fleet
- Earlier-than-BaU purchase simple present-value discounting?
- Younger-than-BaU purchase (Costs more but a 'better' model)
- Relationship between trip frequency and vehicle renewal decision
- Costs & benefits of petrol vs diesel vs new technology
- Impact on 2<sup>nd</sup>-hand value of non-compliant vehicles
- Costs & uptake of scrappage schemes
- O How to incorporate 'public acceptability' into the appraisal



SASELE



## SYSTRA'S ENEVAL /EVA Tools

- ENEVAL uses Emissions Factors Toolkit values to estimate traffic emissions on a link-byemissions link basis, including the option to separate queuing at junctions from the link-based
- Ability to use local base-year fleet data as the starting point for the future-year fleet emission profiles

• EVA imports vehicle emissions rates from ENEVAL, network flows (by compliant and non-compliant) and allows the user to specify a revised %compliant split (by road type and vehicle type)

| 1 and     |                   | Read in | Read in Data and Calculate Initial Splits<br>and Emissions | ate Initial Splits<br>na          | Adjust Compl<br>Recold | Adjust Compilant Vehicle Spits and<br>Recolculate Emissions |        | Output Selected Data to Text File | to Text File | <ul> <li>Full Link Emissions</li> <li>Adjustment Summary</li> </ul> |
|-----------|-------------------|---------|------------------------------------------------------------|-----------------------------------|------------------------|-------------------------------------------------------------|--------|-----------------------------------|--------------|---------------------------------------------------------------------|
| Road Type | ype Vehicle Group | Group   | Initial<br>Compliant<br>Splits (%)                         | Desired<br>Compilant<br>Spits (%) | Adjusted<br>Spits      | NOX                                                         | NO2    | PM10                              | PM2.5        | Nethane                                                             |
| 221       | Car and Tax       | Tax     | 26.1                                                       | 30                                | 30                     | -387                                                        | 42     | 5.4%                              | -5,4%        | 0.8%                                                                |
| CAZ 1     | LGV               |         | 18.5                                                       | 40                                | 40                     | -17.9%                                                      | -18%   | -24.12                            | -24,1%       | 28.9%                                                               |
| CAZ 1     | HGV               |         | 29.6                                                       | 50                                | 50                     | -25%                                                        | -25.1% | -28.5%                            | -28.5%       | 0%                                                                  |
| CNZ 1     | Buses             |         | 16                                                         | 60                                | 60                     | 45.7%                                                       | 45.7%  | -51.7%                            | -51.7%       | 110                                                                 |
| CAZ 2     | Car and Tax       | Taxi    | 14.5                                                       | 70                                | 70                     | -50.9%                                                      | -53 7% | 45.13                             | -65.15       | 6.1%                                                                |
| CAZ 2     | IGV               |         | 19.3                                                       | 80                                | 8                      | 48.1%                                                       | 42.3%  | -55%                              | 453          | 71.7%                                                               |
| CAZ 2     | HGV               |         | 22.8                                                       | 90                                | 89.8                   | -72.8%                                                      | -72.9% | -77,8%                            | -77.8%       | 27                                                                  |
| CAZ 2     | Buses             |         | 26.4                                                       | 80                                | 80                     | -60.2%                                                      | -50 2% | -63.4%                            | -63.4%       | 07                                                                  |
| CAZ 3     | Car and Tax       | Taxi    | 14.3                                                       | 70                                | 70                     | -55.2%                                                      | -58.2% | -65.12                            | -65.1%       | 1.3%                                                                |
| CAZ3      | NDI               |         | 24.7                                                       | 60                                | 8                      | -29.6%                                                      | 28 62- | 40.5%                             | -40.5%       | 39.8%                                                               |
| CAZ 3     | HGV               |         | 19                                                         | 50                                | 50                     | -37.5%                                                      | -37.5% | -38.7%                            | -38.7%       | 20                                                                  |
| CAZ 3     | Buses             |         | 16.1                                                       | 40                                | 40                     | -26.4%                                                      | -26.4% | -27.3%                            | -27.3%       | 0%                                                                  |
| Non-CAZ   | Z Car and Tax     | Taxo    | 9.1                                                        | 30                                | 30                     | -19.2%                                                      | -19.8% | -24.1%                            | -24.15       | 215                                                                 |
| Non-CAZ   | NSN Z             |         | 32.8                                                       | 40                                | 40                     | -5.87                                                       | -6.9%  | 18.8                              | -8.87        | 8.5%                                                                |
| Non-CAZ   | Z HGV             |         | 43.7                                                       | 50                                | 55                     | -10,4%                                                      | -10.5% | -10.7%                            | -10.7%       | 10                                                                  |
| Non-CAZ   | Z Buses           |         | 40.2                                                       | 60                                | 60                     | -33%                                                        | -33%   | -33.4%                            | -33.4%       | 2.0                                                                 |

# Tasks Completed (Sheffield & Rotherham)

- Air Quality Monitoring Data Time Series Analysis to scale of the problem at known locations
- 1 year's worth of ANPR data at 11 camera clusters used to determine:
- Local fleet profiles significantly different from national average
- %CAZ-Compliant by vehicle type and location
- Frequency Distribution of Sightings (Days per Year) by vehicle type and location
- Baseline and Business as Usual Emissions Modelling Completed
- 'Cartoon' tests of various potential measures completed



| S  |
|----|
| -  |
| S. |
| A  |
|    |
| D  |

| 30%      | 22%                          | 23%        | 14%     | 67%          | 29%          | 50%                      | High (>2 per week)                                               |
|----------|------------------------------|------------|---------|--------------|--------------|--------------------------|------------------------------------------------------------------|
| 22%      | 22%                          | 22%        | 15%     | 21%          | 22%          | 22%                      | MH (1<=x < 2 per week)                                           |
| 33%      | 37%                          | 36%        | 36%     | 10%          | 33%          | 20%                      | LM (<1 per week)                                                 |
| 16%      | 19%                          | 19%        | 36%     | 2%           | 16%          | 7%                       | Low (<1 per month)                                               |
| Vehicles | LIGHT                        | (RIGID)    | (ARTIC) | Special      | Ordinary     | COACHES Ordinary Special | Trip Frequency                                                   |
| AII      | GOODS - All                  | HEAVY      | HEAVY   | CARS         | CARS         | <b>BUSES &amp;</b>       |                                                                  |
|          |                              | GOODS -    | GOODS - |              |              |                          |                                                                  |
| nbined   | - all ANPR Clusters Combined | II ANPR CI |         | and trip fre | nicle type a | leet (by veł             | Distribution of Daily Fleet (by vehicle type and trip frequency) |

| Distribution of Annual Fleet (by vehicle type and trip frequency) - all ANPR Clusters Combined | Fleet (by ve             | hicle type | and trip fre | equency) - | all ANPR C | lusters Cor | nbined   |
|------------------------------------------------------------------------------------------------|--------------------------|------------|--------------|------------|------------|-------------|----------|
|                                                                                                |                          |            |              | GOODS -    | GOODS -    |             |          |
|                                                                                                | <b>BUSES &amp;</b>       | CARS       | CARS         | HEAVY      | HEAVY      | GOODS -     | AII      |
| Trip Frequency                                                                                 | COACHES Ordinary Special | Ordinary   |              | (ARTIC)    | (RIGID)    | LIGHT       | Vehicles |
| Low (<1 per month)                                                                             | 63%                      | 74%        | 32%          | 87%        | 77%        | 76%         | 74%      |
| LM (<1 per week)                                                                               | 22%                      | 20%        | 25%          | 11%        | 18%        | 19%         | 19%      |
| MH (1<=x < 2 per week)                                                                         | 8%                       | 4%         | 18%          | 1%         | 3%         | 4%          | 4%       |
| High (>2 per week)                                                                             | 7%                       | 3%         | 25%          | 1%         | 2%         | 2%          | 3%       |

ANPR Data – Trip Frequency Analysis

## Conclusions from the ANPR Analysis

LGVs are a lot less compliant with the typical CAZ categories than HGVs

Articulated HGVs tend to make fewer regular trips through specific locations than LGVs and smaller HGVs

cars and make a lot more regular trips Private hire cars and car-based taxis are a lot less compliant that average

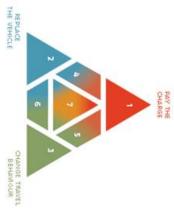
varies significantly by location The proportion of vehicles which might upgrade in response to a CAZ

and 'regular' infrequent trips, making these less likely to upgrade in response to a local In particular, motorways and strategic routes involve a high proportion of CAZ – typically less than 1 in 4 vehicles are both currently-non-compliant



#### SYSTIA

Agreeing likelihood of vehicle upgrades based on trip frequency


and level of the charge (and amount of financial support?)

Outstanding Tasks (Sheffield & Rotherham)

• Identifying Charging Cordons that solve the current AQ problems

without creating any new ones

• Identifying the most effective/cost-effective charging regime





### **Concluding Remarks**

- Existing models good at the mode and destination and rerouting responses, but less
- able to cope with vehicle replacement
- Do we need to disaggregate the vehicle owner/driver responses by income ?
- Detailed design of the CAZ boundaries likely to be tricky
- Additional research into vehicle replacement (behaviour and appraisal) would be useful
- In particular, how will the vehicle fleet in a given area (petrol/diesel/electric/hybrid)
- vary over time in the Business-as-Usual and Do Something scenarios?





Director of Innovation Dr David Connolly SYSTRA Ltd

**Questions/Discussion** 

0

dconnolly@systra.com